Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Ming Yu, Hui-Zhong Kou,* Zhong-Hai Ni, Chun-Hua Ge and Ai-Li Cui

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
kouhz@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.073$
$w R$ factor $=0.189$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A three-dimensional polymeric mixed-valence copper complex: poly[tri- μ-azido- μ-di-2-pyridyl-diazene-dicopper(I,II)]

The title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{~N}_{3}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\right]_{n}$, shows a threedimensional poylmeric structure. Each Cu atom is surrounded by five N atoms from three bridging azide ligands and one di-2-pyridyldiazene ligand $[\mathrm{Cu}-\mathrm{N}=2.002$ (5), 2.317 (6), 2.020 (4), 1.995 (5) and 1.985 (3) Å], forming a CuN_{5} trigonal bipyramid. One $\mu_{1,1}$-azide bridges two Cu atoms and the other two $\mu_{1,1}$-azides bridge pairs of Cu atoms, forming a $-\mathrm{Cu}-$ $\mathrm{N}-\mathrm{Cu}-\mathrm{N}_{2}-$ chain. The di-2-pyridyldiazene bridges two Cu atoms of different $-\mathrm{Cu}-\mathrm{N}-\mathrm{Cu}-\mathrm{N}_{2}-$ chains, forming a three-dimensional polymeric structure. On the basis of charge equilibrium, the presence of one $\mathrm{Cu}^{\mathrm{II}}$ and one Cu^{I} ion are deduced and the two ions are disordered because of the occurrence of only one unique Cu atom in the structure.

Comment

μ-Azidocopper complexes have received intense attention due to their structural and magnetic diversity. The azide anion can bridge two copper ions either in an 'end-on' $\left(\mu_{1,1}-N_{3}\right)$ fashion or an 'end-to-end' $\left(\mu_{1,3}-N_{3}\right)$ fashion (Comarmond et al., 1982; Sikorav et al., 1984; Agnus et al., 1979; Kahn et al., 1983). Sometimes both bridging fashions are present in one complex (Felthouse \& Hendrickson, 1978; Banci et al., 1984). We report here the preparation and crystal structure of a three-dimensional azido mixed-valence copper complex, (I).

(I)

As shown in Fig. 1, each Cu atom in (I) is surrounded by five N atoms of three azide bridging ligands and one di-2-pyridyldiazene ligand, forming a CuN_{5} trigonal bipyramid. A linear $\mu_{1,1}$-azide ligand bridges two Cu atoms, and two linear $\mu_{1,1}$-azide anions bridge two Cu atoms, forming a $-\mathrm{Cu}-\mathrm{N}-$ $\mathrm{Cu}-\mathrm{N}_{2}$ - chain; di-2-pyridyldiazene bridges two Cu atoms of different $-\mathrm{Cu}-\mathrm{N}-\mathrm{Cu}-\mathrm{N}_{2}-$ chains, forming a threedimensional structure. Charge equilibrium calculation suggests that there present one $\mathrm{Cu}^{\mathrm{II}}$ and one Cu^{I} ion, which are disordered because of the existence of only one unique Cu atom in the structure. Therefore, the bond distances and the bond angles around the Cu^{I} ion should be the average values. One azide group (N6/N7/N8) lies along a twofold rotation axis.

Received 13 June 2006
Accepted 23 July 2006

Figure 1
A view of the coordination environment in the title compound, shown with 30% probability displacement ellipsoids.

Figure 2
The crystal structure of the title compound, viewed along the a axis. H atoms have been omitted.

The $\mathrm{Cu}-\mathrm{N}$ distances found in (I) are in accord with the $\mathrm{Cu}-\mathrm{N}$ distances found in other copper complexes containing an azide bridging ligand (You, 2005; Ghoshal et al., 2004). The coordinating azide anions are nearly linear and show bent coordination modes with the metal atoms (Table 1). The $\mathrm{N}-\mathrm{N}$ bond of di-2-pyridyldiazene is longer than the $\mathrm{N}-\mathrm{N}$ bonds of the azide ligand. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances, which are bridged by one azide bridging ligand, two azide bridging ligands and di-2pyridyldiazene, are 3.492 (4), 3.342 (3) and 4.678 (4) A., respectively. The dihedral angle between the two pyridine ring planes of di-2-pyridyldiazene is $29.8(1)^{\circ}$.

Experimental

Crystals of (I) were prepared by the multilayer diffusion method. In a typical preparation, a solution of $\mathrm{NaN}_{3}(19.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was placed in a tube to which was added a buffer layer of ethanol/water ($20 \mathrm{ml}, 1: 1 \mathrm{v} / \mathrm{v}$) Finally, a solution of $\mathrm{CuNO}_{3}(25.1 \mathrm{mg}$, 0.2 mmol) and di-2-pyridyldiazene ($18.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added to form a third layer. Black block-shaped crystals were formed on diffusion of the reactants over a period of two weeks. Analysis found: C 27.21, H 1.80, N 41.26\%; calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cu}_{2} \mathrm{~N}_{13}$: C 27.46, H $1.84, \mathrm{~N} 41.63 \%$.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{~N}_{3}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\right]$
$Z=16$
$M_{r}=437.37$
Orthorhombic, Fddd
$D_{x}=1.789 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=13.520$ (3) A
$\mu=2.64 \mathrm{~mm}^{-1}$
$b=18.127$ (4) \AA
$T=292$ (3) K
$c=26.501(5) \AA$
Block, black
$0.12 \times 0.08 \times 0.06 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.774, T_{\text {max }}=0.852$
18086 measured reflections 1876 independent reflections 1808 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.077$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0802 P)^{2}\right.} \\
&+91.4266 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=1.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.001(5)$	$\mathrm{Cu} 1-\mathrm{N} 6$	$1.986(3)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.318(6)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.213(9)$
$\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{ii}}$	$2.020(4)$	$\mathrm{N} 4-\mathrm{N} 4^{\mathrm{ii}}$	$1.319(8)$
$\mathrm{Cu} 1-\mathrm{N} 5$	$1.995(5)$	$\mathrm{N} 6-\mathrm{N} 7$	$1.210(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{ii}}$	$167.3(2)$	$\mathrm{N} 4^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$93.60(19)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$78.8(2)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1$	$95.5(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$123.7(5)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$113.5(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$116.9(5)$	$\mathrm{N} 7-\mathrm{N} 6-\mathrm{Cu} 1^{\mathrm{iii}}$	$118.44(16)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$177.4(10)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{N} 6$	180
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii)
$-x+\frac{5}{4},-y+\frac{5}{4}, z$.			$-x+\frac{5}{4}, y,-z+\frac{5}{4} ;$
	(iii)		

All H atoms were placed in idealized positions and constrained to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual density peak is $0.96 \AA$ from the Cu 1 atom.

Data collection: CrystalStructure (Rigaku/MSC, 2004); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (Nos. 20201008 and 50272034).

References

Agnus, Y., Louis, R. \& Weiss, R. (1979). J. Am. Chem. Soc. 101, 3381-3384.
Banci, L., Bencini, A. \& Gatteschi, D. (1984). Inorg. Chem. 23, 2138-2141.
Comarmond, J., Plumere, P., Lehn, J.-M., Agnus, Y., Louis, R., Weiss, R., Kahn, O. \& Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 6330-6340.

Felthouse, T. R. \& Hendrickson, D. N. (1978). Inorg. Chem. 17, 444-456.
Ghoshal, D., Maji, T. K., Rosair, G. \& Mostafa, G. (2004). Acta Cryst. C60, m212-m214.
Kahn, O., Sikorav, S., Gouteron, J., Jeannin, S. \& Jeannin, Y. (1983). Inorg. Chem. 22, 2877-2883.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. and SHEXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin. USA.
Sikorav, S., Bkouche-Waksman, I. \& Kahn, O. (1984). Inorg. Chem. 23, 490495.

You, Z.-L. (2005). Acta Cryst. C61, m339-m341.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

