metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Ming Yu, Hui-Zhong Kou,* Zhong-Hai Ni, Chun-Hua Ge and Ai-Li Cui

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: kouhz@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.011 \text{ Å}$ R factor = 0.073 wR factor = 0.189 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A three-dimensional polymeric mixed-valence copper complex: poly[tri-µ-azido-µ-di-2-pyridyldiazene-dicopper(I,II)]

The title complex, $[Cu_2(N_3)_3(C_{10}H_8N_4)]_n$, shows a threedimensional poylmeric structure. Each Cu atom is surrounded by five N atoms from three bridging azide ligands and one di-2-pyridyldiazene ligand [Cu-N = 2.002 (5), 2.317 (6),2.020 (4), 1.995 (5) and 1.985 (3) Å], forming a CuN₅ trigonal bipyramid. One $\mu_{1,1}$ -azide bridges two Cu atoms and the other two $\mu_{1,1}$ -azides bridge pairs of Cu atoms, forming a -Cu- $N-Cu-N_2-$ chain. The di-2-pyridyldiazene bridges two Cu atoms of different $-Cu-N-Cu-N_2-$ chains, forming a three-dimensional polymeric structure. On the basis of charge equilibrium, the presence of one Cu^{II} and one Cu^I ion are deduced and the two ions are disordered because of the occurrence of only one unique Cu atom in the structure.

Comment

 μ -Azidocopper complexes have received intense attention due to their structural and magnetic diversity. The azide anion can bridge two copper ions either in an 'end-on' ($\mu_{1,1}$ - N_3) fashion or an 'end-to-end' ($\mu_{1,3}$ - N_3) fashion (Comarmond *et al.*, 1982; Sikorav *et al.*, 1984; Agnus *et al.*, 1979; Kahn *et al.*, 1983). Sometimes both bridging fashions are present in one complex (Felthouse & Hendrickson, 1978; Banci *et al.*, 1984). We report here the preparation and crystal structure of a three-dimensional azido mixed-valence copper complex, (I).

As shown in Fig. 1, each Cu atom in (I) is surrounded by five N atoms of three azide bridging ligands and one di-2-pyridyldiazene ligand, forming a CuN₅ trigonal bipyramid. A linear $\mu_{1,1}$ -azide ligand bridges two Cu atoms, and two linear $\mu_{1,1}$ -azide anions bridge two Cu atoms, forming a $-Cu-N-Cu-N_2$ — chain; di-2-pyridyldiazene bridges two Cu atoms of different $-Cu-N-Cu-N_2$ — chains, forming a three-dimensional structure. Charge equilibrium calculation suggests that there present one Cu^{II} and one Cu^I ion, which are disordered because of the existence of only one unique Cu atom in the structure. Therefore, the bond distances and the bond angles around the Cu^I ion should be the average values. One azide group (N6/N7/N8) lies along a twofold rotation axis.

© 2006 International Union of Crystallography All rights reserved Received 13 June 2006 Accepted 23 July 2006

18086 measured reflections

 $R_{\rm int} = 0.077$ $\theta_{\rm max} = 27.5^{\circ}$

1876 independent reflections 1808 reflections with $I > 2\sigma(I)$

Figure 1

A view of the coordination environment in the title compound, shown with 30% probability displacement ellipsoids.

Figure 2

The crystal structure of the title compound, viewed along the *a* axis. H atoms have been omitted.

The Cu-N distances found in (I) are in accord with the Cu-N distances found in other copper complexes containing an azide bridging ligand (You, 2005; Ghoshal et al., 2004). The coordinating azide anions are nearly linear and show bent coordination modes with the metal atoms (Table 1). The N-N bond of di-2-pyridyldiazene is longer than the N-N bonds of the azide ligand. The $Cu \cdot \cdot Cu$ distances, which are bridged by one azide bridging ligand, two azide bridging ligands and di-2pyridyldiazene, are 3.492 (4), 3.342 (3) and 4.678 (4) Å, respectively. The dihedral angle between the two pyridine ring planes of di-2-pyridyldiazene is $29.8 (1)^{\circ}$.

Experimental

Crystals of (I) were prepared by the multilayer diffusion method. In a typical preparation, a solution of NaN₃ (19.5 mg, 0.3 mmol) in water (10 ml) was placed in a tube to which was added a buffer layer of ethanol/water (20 ml, 1:1 ν/ν) Finally, a solution of CuNO₃ (25.1 mg, 0.2 mmol) and di-2-pyridyldiazene (18.4 mg, 0.1 mmol) in ethanol (10 ml) was added to form a third layer. Black block-shaped crystals were formed on diffusion of the reactants over a period of two weeks. Analysis found: C 27.21, H 1.80, N 41.26%; calculated for C₁₀H₈Cu₂N₁₃: C 27.46, H 1.84, N 41.63%.

Crystal data

$[Cu_2(N_3)_3(C_{10}H_8N_4)]$
$M_r = 437.37$
Orthorhombic, Fddd
a = 13.520 (3) Å
b = 18.127 (4) Å
c = 26.501 (5) Å
$V = 6495 (2) \text{ Å}^3$

Z = 16 $D_x = 1.789 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 2.64 \text{ mm}^-$ T = 292 (3) K Block, black $0.12 \times 0.08 \times 0.06 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP

```
diffractometer
```

 ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.774, \ T_{\max} = 0.852$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0802P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.074$	+ 91.4266 <i>P</i>]
$vR(F^2) = 0.189$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.24	$(\Delta/\sigma)_{\rm max} = 0.003$
876 reflections	$\Delta \rho_{\rm max} = 1.35 \text{ e } \text{\AA}^{-3}$
15 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	2.001 (5)	Cu1-N6	1.986 (3)
Cu1-N1 ⁱ	2.318 (6)	N1-N2	1.213 (9)
Cu1-N4 ⁱⁱ	2.020 (4)	N4-N4 ⁱⁱ	1.319 (8)
Cu1-N5	1.995 (5)	N6-N7	1.210 (10)
N1-Cu1-N4 ⁱⁱ	167.3 (2)	N4 ⁱⁱ -Cu1-N1 ⁱ	93.60 (19)
$N1-Cu1-N1^{i}$	78.8 (2)	N5-Cu1-N1	95.5 (2)
N2-N1-Cu1	123.7 (5)	$N5-Cu1-N1^{i}$	113.5 (2)
N2-N1-Cu1 ⁱ	116.9 (5)	N7-N6-Cu1 ⁱⁱⁱ	118.44 (16)
N3-N2-N1	177.4 (10)	N8-N7-N6	180
Symmetry codes: (i $-x + \frac{5}{4}, -y + \frac{5}{4}, z.$) $-x + 1, -y +$	1, $-z + 1$; (ii) $-x + \frac{5}{4}$	$, y, -z + \frac{5}{4};$ (iii)

All H atoms were placed in idealized positions and constrained to ride on their parent C atoms, with C-H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$. The highest residual density peak is 0.96 Å from the Cu1 atom.

Data collection: CrystalStructure (Rigaku/MSC, 2004); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (Nos. 20201008 and 50272034).

References

Agnus, Y., Louis, R. & Weiss, R. (1979). J. Am. Chem. Soc. 101, 3381-3384. Banci, L., Bencini, A. & Gatteschi, D. (1984). Inorg. Chem. 23, 2138-2141.

Comarmond, J., Plumere, P., Lehn, J.-M., Agnus, Y., Louis, R., Weiss, R., Kahn, O. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 6330-6340.

- Felthouse, T. R. & Hendrickson, D. N. (1978). Inorg. Chem. 17, 444-456.
- Ghoshal, D., Maji, T. K., Rosair, G. & Mostafa, G. (2004). Acta Cryst. C60, m212-m214.
- Kahn, O., Sikorav, S., Gouteron, J., Jeannin, S. & Jeannin, Y. (1983). Inorg. Chem. 22, 2877-2883.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. and SHEXS97. University of Göttingen, Germany
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin. USA.
- Sikorav, S., Bkouche-Waksman, I. & Kahn, O. (1984). Inorg. Chem. 23, 490-495
- You, Z.-L. (2005). Acta Cryst. C61, m339-m341.